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The motion of a fluid under the action of the forces of mutnal attraction
of its particles in accordance with Newton’s law for the case in which
the displacements are expressed as linear functions of the coordinates
was first investigated by Dirichlet. He showed that for known initial
conditions the fluid can move so that its free surface during the time

of the motion remains the surface of an ellipsoid whose axes, generally
speaking, change their magnitudes and directions with the passage of
time, These investigations were continued by Dedekind, Riemann, Steklov
and by a number of other authors (see the bibliography in Lamb [ 1] ). It
has been shown, in particular, that in this case there can be rotations
of the whole fluid as a single solid body about the smallest axis of a
tri-axial ellipsoid (the Jacobi ellipsoid) or about the polar axis of an
oblate ellipsoid (the Maclaurin ellipsoid), the existence of which in the
general case was established considerably before the publication of the
work of Dirichlet (1860),

The question of the stability of the ellipsoidal figures of equilibrium
of a rotating fluid attracted the steady attention of many investigators,
starting with Liouville and Riemann,

Riemann [ 2] investigated the stability of Maclaurin and Jacobi
ellipsoids with respect to initial displacements and velocities which
satisfy the hypotheses of Dirichlet. Noting the analogy between the
differential equations which define under some additional special assump-
tions the semi-axes of a fluid ellipsoid as a function of time and the
differential equations of the motion of a material point on some surface
under the action of forces which possess a force potential, Riemann used
a theorem of Lagrange concerning the minimum of this force potential as
a oriterion for the stability of figures of equilibrium. Thus, he
established that Jacobi ellipsoids are always stable and that Maclaurin
ellipsoids are stable or unstable according to whether their eccentricities
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are less than or greater than 0.9528.,.. In this connection, as is not
difficult to see, by Riemann stability we mean stability with respect to
the lengths of the fluid ellipsoid semi-axes and with respect to the
rates of variation, apart from the Dirichlet condition that in the dis-
turbed motion the moment of momentum and the vorticity have the same
values as in the case of the figures of equilibrium.

Thomson and Tait in their treatise [3] indicate (without proof) that
all planetary ellipsoids of revolution are stable if the fluid for all
time remains an ellipsoid of revolution. But if the condition that the
fluid always keep the form of an ellipsoid is imposed, then Maclaurin
ellipsoids are stable or unstable depending on whether their eccentric-
ities are less than or greater than 0.8126..., and tri-axial ellipsoids
are always stable.

A rigorous definition of the stability of figures of equilibrium of a
fluid as the stability of its form was first given by Liapunov [4]; the
theory, which he proved and which is a generalization of a theory of
Raus, gives a sufficient condition for the stability of the form of
equilibrium for a given moment of momentum of the fluid.

Using this criterion Liapunov proved that ellipsoids of revolution are
stable as long as their eccentricities remain less than 0.8126,..,, and
that tri-axial ellipsoids are stable within certain narrow limits; the
Jacobi ellipsoid of revolution is stable. For the particular case in which
the surface of the fluid remains ellipsoidal, the upper limit of the
eccentricities of stable Maclaurin ellipsoids remains just the same as in
the general case, but Jacobi ellipsoids in this case are always stable,

Thus, if we confine ourselves to the case of ellipsoidal disturbances,
then the conclusions of Riemann, Thomson and Tait and Liapunov with
respect to the stability of Jacobi ellipsoids coincide, but with respect
to the stability of Maclaurin ellipsoids they differ.

In this connection the question arises: is it not possible to consider
the problem of the stability of Maclaurin ellipsoids from some other point
of view which differs from the one presented, and what will the results
be? It is especially tempting to try to solve this problem of the stabil-
ity in the sense of Liapunov and by the methods of the stability theory
of Liapunov for a system with a finite number of degrees of freedom.

The solution of this problem for the condition that the initial dis-
turbances satisfy the Dirichlet hypotheses is given below.

1. We will investigate an ideal homogeneous incompressible fluid, the
particles of which are attracted to each other in accordance with
Newton's law, while the pressure on its free surface remains constant.

For the indicated conditions the mass-center of the fluid moves
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uniformly and rectilinearly; without loss of generality we will consider
it to be stationary. We will take the mass-center for the origin of two
rectangular systems of coordinates: a stationary system Oxlylz1 and a
moving system Oxyz, which moves coupled with the fluid about its mass-
center, We will denote by p, q, r the projections on the x-, y-, z-axes
of the instantaneous angular velocity w of the moving system of co-
ordinates relative to the stationary system.

We shall write the Fulerian form of the equations of notion of the
fluid 1n the moving axes:

dv au i 6p1

5 Ty, — S
%+P”u"‘qvx=’~% —%%’;—’ (1.1)
2 a
% ”a%‘"" a? =0

Here v, v, v, denote the projections on the moving axes of the
vector v, the fluid velocity relative to the coordinate system Ox,y,z,,
p is the density of the fluid, p, is the hydrodynamic pressure, and U is
the attraction potential.

We wiil confine the investigation only to such motions of the fluid
for which its free surface remains for all time an ellipsoid [2,5]

Fla,yat)m=2 4+ 4+ —1=0 (1.2)

a c

with varjable axes a(t), b(t), ¢(t), and we will assume that

) 99 . .9
Uy = B—i A4y - wgY, vy = Ty + 07 — @7, T = 57 4 0 — @ (1.3)
Here mi(i = 1,2,3) is a function only of time t, and ¢(x, Yy, z, tris
a harmonic function of the coordinates in a region r, the bounding sur-

face (1.2).

We obtain the boundary condition for the function ¢(x, y, z, t) from
the kinetic condition for the free surface

aF oF oF aF
ittt vty =0

where u, v, » denote projections of the fluid velocity relative to the
coordinate system Oxyz on the axes of the latter. This condition taking
into account equations {1.3) takes the following form on the surface (1.2):
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a(PI 6‘?2 a? , ygl zzlv
Jzr a* +dyb2+dzc2:—a +—b+—c+

a3
c? — b2 b? — at

+ ((1)1 - p) b2c? yz + <(l)2 - q) xz + (wS - r) a3 xy (1°4)

azc2

where for brevity we introduce the notation

, _ da b o lﬁ ,__de
=@ Ta@r =@
It 1s easy to see that the harmonic function
1 74a b’ c’ b2 — ¢2
¢z, ¥,2,t) = T(—a—xz-}— ¥+ 7 )+m (p—w)yz +
c® —

+cg—+a2—(q——-w2)xz+ 2+:2( r— ) 1y (1.9)

satisfies condition (1.4); at the same time a(t), b(t), ¢(¢) must satisfy
the equation

a4 b e 1.6
Tty te=0 (1.6)
which appears as a result of the incompressibility equation.
Taking into account (1.5) the equalities (1.3) take the following form:

(a? — b)) r — 2a%wy (c?— a?) ¢ + 2a%w

a? _+_ b2 y + a? + 62
b (b2 — ¢?) p— 2b%w, (a? — b?) r + 2b%04
vy:?y'}‘ b2+ ¢ z+ a® f b2 T (1.7)
< (c?— a?) g — 2¢%w, (6% — ¢2) p 4 2¢%w
Ul&\?z—*‘ c? + a? + c? + b2

To determine the functions (ui(t) we will make use of the Helmholtz
vortex equation

dQ
- FoxQ=(Qgy)v

where 1 = rot v in the case under consideration has the following pro-
Jections on the moving axes:

Q. = 2w, Q, = 2w,, Q; = 2w,

Taking into account formulas (1.7), we write the Helmholtz equations

in the moving axes in the form (1.8)
%%_ﬁaﬁ roy + %ﬁ— 995 + -zpac(zc)z{;zbi gy @0s= 0
;7%‘2 — ‘bz%‘bcf pwy + 7_'2:?— ro; + (azz_t (bij (_b_zc:_) T 0
%%——c,i—caﬁ qw, + b’i s Pwe -+ @f%% 0w, = 0
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To construct differential equations for p(t), q{t), r{t) we will make
use of a theory about the moment of momentum of the system, according to
which we have
aG, dG dG
+qG rG, =0, —dti—i—ermsz:O —&%erGy—quz-O (1.9)

Here G, G, G denote the projections on the coordinate axes x, y, z
of the moment of momentun of the fluid mass relative to the point O.

Taking into account the equalities (1.7), it is easy to find
Gy = Alp + Agﬁ)l, GV == qu + Bg(l)z, Gz = Clr + Cgms (1.10)

where for brevity we introduce the following notation:

4 — M (b= c¥)? B — M (ct—a2)? Co e M (a2 —b%)?
175 Thr 4ot ! 17 5 "ea et 175 a4t (1.11)
M b2t M cPa? 4M  a%?
szTm’ Bz—*g*m. Cg"Tm

and M = 4/3 np abc is the fluid mass.

We will finally formulate the differential equations for a(t), b(t),
c(t). It is easy to see [ 5] that in the case under consideration the
attraction potential for the interior points is

U =+f(P2® + Qy* + Rz*) — JH

where

H=2M{-Z=, o0 =@+N0+NE+)
%_ {1.12)

f is the constant of attraction; without loss of generality we will
further consider f = 1.

Substituting in equations (1.1) the right-hand side of the equalities
(1.7) for v, v, v, and taking into account equations (1.8) and (1.9),
and also (1.12), we obtain

1 am
o Or

=0, @+w)y+— B =0 (Rtw)st32=0

P e
(1.13)

where w_, w_, w, are quantities which do not depend on the coordinates
of the fl\né particles:

(P4 we) x4 —
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a” a? — ¢?
Wy = — — (a1+c22(a2—+-dc2)q a1+b22(a2—+-3b2)r“—{ (1.14)
4 (a2 — c?)ct 4 (a2 - b2)b? 4a2b? 4att
-+ (a1 5z 902 CEN A [CENSE wg® — (@ oo V2
b b —a? b2 1 342 b2 — 2
wy == e — (a2+b2\2( + 3a )1 b2+c2)2 (0% + 3¢®) p* 4
4(b® — a?) a? (b2 — ) c2 b2t 4a?b?
+ (a® 1 b7)2 ’3+ (52 + o3z~ P1— (B4 c7y2 o — (a® 1 b7)? 0y’
) c” 2 — b2
Uz=:7’“‘&f¥ﬁp(&“F3b%P2—“(ﬂ+a (c* + 3a?) ¢* 4‘—@3qjﬁL‘Pwr%
4 (c?—a?)a? 4c2a? 2 4b%c? 2
T T ayr 10T (e 2 T i gy 1

Integrating equations (1.13), we find
FUP + w2+ (Q + ) y* + (R4 wy) 2] + BP0 )
where o(t) is an arbitrary function of time.

But on the free surface of the fluid the pressure Py, according to the
condition specified, is constant, therefore, in order that this surface
have the form of an ellipsoid (1.2) it is necessary and sufficient that
an ellipsoid be coincident with a surface of constant pressure. Conse-
quently, the function o(t) must be determined so that the surface of
constant pressure coincides with the surface (1.2). Comparing coefficients,

we obtaln

(P -+ wy)a® = (Q + w,) b* = (R + w,) c* = 26 (1) (1.15)

In addition, the hydrodynamic pressure will be determined by the
formula

pL—Po z2 y? 22
g _c(t)(i—72 _____ ) (1.16)

Hence it follows that the function o(t) must not take negative values.
From the relations (1.15) we find equations for a(t), b(t), c(t) :

2 f2 2
2 __p, wy:Lb—g—Q, w,= 5 —R (1.17)

into the left-hand sides of which we must substitute in place of w o
Uy, W, the expressions according to (1.14),

Thus, the problem of studying the motion of a fluid mass which has the
form of an ellipsoid (1.2) with varying axes is reduced to the invest-
igation of the ten equations (1.17), (1.6), (1.8) and (1.9) with the same
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number of unknowns a, b, c, Wy, Wy W3, P, G, T, O

This system of equations permits a series of first integrals.

We multiply equations (1.17) by a’a, b°b, c’c respectively and add
them, we multiply the result by 1/5 pdr and integrate over the whole
volume of the fluid; we add the resulting equation to the sum of the pro-

ducts of equations (1.9) by p, q, r respectively, whence taking into
account equations (1.6) and (1.8), we obtain the energy integral

% (@4 b%4c"?) + % (41p* + B1g* 4 Cyr? 4 Ay0;? + Byw,? + Cowg?) -
+4- W = const (1.18)
where the potential energy of the system 1is

&

W—tp| Udee —2MH

Multiplying equations (1.9) by G, G, G, respectively and adding, we
obtain an equation from which there follows immediately the integral ex-
pressing the constancy of the moment of momentum of the system

(A;p + 450,)% 4 (B1q 4 Byw,)? + (Cyr - Cyw3)? = const (1.19)

We now multiply equations (1.8) bya&/a, ab/b, aé/crespectively and
add, we easily obtain the integral expressing the constancy of the vorti-
city

(“%)ﬂ.{. (%)2-{— (—%’5’)’ = const (1.20)

Finally, multiplying equation (1.6) by abc, we obtain the integral
expressing the constancy of the mass of the fluid

abc = const (1.21)

2. The system of equations of motion of the fluid mass permits the
particular solution

a = Qg, b:bO’ C = Cyp, a':l)'———c':O
p=q¢q=0, r=w, w,=0,=0 0;=0, ¢c=g, (2.1)

which describes a uniform rotation of all the fluid as a single solid
body about the axis Oz with angular velocity w. The constants a, b, c,
@, 0 must here satisfy equations (1.17) which take the form

L = 200 p, —ni= 290 —Q, 0= 220 —R

a?, by? Co”

Hence we obtain
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(P — w?) ay? = (Q — 0?) be® = Rey? (2.2)

Investigation of these equations leads, as is well-known [6], to the
following conclusions: figures of equilibrium of a rotating fluid exist
which have the form of ellipsoids of revolution (Maclaurin ellipsoids)
when a; = by > ¢, and of tri-axial ellipsoids (Jacobi ellipsoids) when
the axis ¢ is the smallest axis of the ellipsoid (1.2).

If 0< 1/2(w?/nfp ) < 0.225..., two Maclaurin ellipsoids which
differ in oblateness from each other correspond to each value of w. For
1/2(w?/nfp) = 0.225,.. both ellipsoids of revolution coincide, reducing
to one limiting Maclaurin ellipsoid. For 1/2(w?2/7fp) > 0.225...
ellipsoidal figures of equilibrium of a rotating fluid do not exist.

In the case of tri-axial ellipsoids, if 0 < 1/2(w?/nfp) < 0.1871,
for each value of w there correspond two identical Jacobi ellipsoids in
which only the x- and y-axes are transposed. For 1/2(w?/mfp) = 0.1871
the axes a; and b, become equal and the Jacobi ellipsoid turns into an
ellipsoid of revolution E, which at the same time is also a Maclaurin
ellipsoid. For 1/2(w?/nfp) > 0.1871 tri-axial ellipsoids of equilibrium
of a rotating fluid do not exist.

The ellipsoid E, which belongs simultaneously to two series of figures
of equilibrium, is a bifurcated ellipsoid.

We shall pass now to the investigation of the stability of Maclaurin
ellipsoids, restricting consideration only to disturbances which satisfy
the Dirichlet hypotheses under which the free surface of the fluid remains
an ellipsoid (1.2).

It is natural to refer to such disturbances as ellipsoidal disturbances
[5]; for information on their figure of equilibrium the resulting motion
of the fluid will be described by equations (1.17), (1.6), (1.8) and (1.9).

For the stability of the figures of equilibrium, we will understand
stability in the sense of Liapunov with respect to the variables a, b, c,
a" b’l C’l C()l,ﬁlz, Qél P, q, r.

And so we will put a; = b, and we will assume for the undisturbed

motion the particular solution (2.1) of the equations of motion. In the
disturbed motion we will put

a=ay+a, b=ay+B, c=c+y r=ow+§ o0z=0+4+7

and for the remaining variables we will keep the previous notation. Sub-
stituting these quantities in equations (1.17), (1.6), (1.8), (1.9), we
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obtain a system of equations for the disturbed fluid; we will not write
down the latter equations explicitly. It is evident that the exact
equations of the disturbed motion permit the following first integrals
which correspond to the integrals (1.18)-(1.21):

V= Ao (P* + ¢ 4 Ao (0 + 0,2 + Copn? + 202003”’1<1 + “;: é ) +

+ 8w B 4y 4 207 (& 4 B) @ (2 + B) + 2Pogo (a-tB) +

om0+ e+ () e {3
+ (,%%‘Z,)o To -+ (a%vz) m?] . e. = const

Va= 4% (p* + ¢%) + 24,04 (pw; 4 qog) + Age® (4% -+ ©,?) + C2027f -+ (2-3)

+ 2 Cyot a0 (@ + B) + 02 + B + af] +2men(co+200“”)+ ..=const
@ 20 2 3 4o
e g S B S e com

V= a¢o (e + B) + ao*t + aoy (@ + B) + coaf + afy =0

The dots here and below designate omtted terms of order greater than
second; the index o indicates that the corresponding quantities must be
computed for values of a = a,, b = bo, ¢ = cqy, C = Cm + C . Ve will
eliminate the variable y from the first 1ntegrals v, = const and V
const, using the integral V, = 0. Solving the latter equation for y, we
obtain
4 (a_%‘BHW)-%

a9

and, substituting in the former, we will have, taking into account equa-
tions (2.2),

Vi = Ay (P® -+ ¢%) + Ao (0% + 02) 4 Cog®? 4 20507 (1 -+

a4+ B
ag )+
2
Mgy b dta (@b B) (2Rt 407 @ + B} +
W | ¢t PW W
(55 + =5 — %a‘m] (0 + %) +

W ¢ W ¢ W M } ) i
+2[6a6b 276_5-371—*— 4t dct + 5 5 0@{3 F .. = const

Va.: (1)]2‘.30.2(1)22 + 2 4 1} {M aoco ( _,* B) + a +

o (0 B s (4% + 40B + B?) + . .. = const
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We will consider the function

1

V::Vl‘_a

4 _ .
Vot 2?;‘2 ng ==

Co— A 1 Co— A
= Alo . Co = (P2 + qz) - 2A10A20 —5;) (Pwl - q("2) -+ A2o Co 2 (‘1’12 “+ wzz) -+

A @B+ (Aut p) 00 FB) 42+ p et

+ 20— Cop) ol HB) F a4 (2.4)
vhere FW | BOW o OW\ | M o
Ay = (a—a-r + 3 a2 ';m)o—}- % (230 a—‘;—z — 3w2)

(2.5)

(oW c W | FEWN | M [, o .
s = (5r5p — 2= 5ra T 35 268 )y + 5 (Bohs — 20%)

As is seen, the expansion of the function V into a series begins with
terms of second order which are quadratic forms of the variables a”, f3°,
y': p, ©, 9, @, a, B, 7. If the signs of the latter are determined, the
sign of the function V will be determined. The first two of them are
positive definite taking into consideration that in the case under con-
sideration a; > c,. We will find the conditions of positive definiteness
for the quadratic fomms of the variables a, f3, 7.

According to the Sylvester criterion

2 2
Ayt p ;\)‘Oz’ >0, (A — 4ya) (Au b Ayp -+ 2 (: 2) >0

0

2 v
(A — Ar) [ (Aus -+ Ays o 4Cs0 125) — 20 2] > 0

Obviously, these inequalities can always be satisfied by choosing some
positive value of the constant g, if only the conditions

2
A+ A+ 40y o >0, An—A4n>0 (2.6)
are fulfilled.

Taking into account the designations of (1.11) and (2.5) and taking
into consideration (1.12) and (2.2) we have

©?
Au -+ A12 + 4C20 ;0’2 =

_3MIC[ 2a 4okl —ed) o ] A\
= 5ot ) L@ 7 F Gr T b T G P G s Ve
¢
o
A A _3Mﬁg( o agt ) P
BT T EF I F A @ 0 (et ) Ve

0
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Because a, > ¢, for Maclaurin ellipsoids, then it is obvious that the
first of the conditions (2.6) is always satisfied. We will consider the
second of these inequalities. Performing the integration and dropping a
positive factor, we reduce it to the formm

L[ (13 4- 312) — (3 + 141% -- 3l*) arc ctgl] > 0
l . Co | . 'Vﬂo -—Co 1 ) (2‘7)
( T Vi @  Yizp

Here ! is a quantity, the inverse of the second eccentricity of the
ellipsoid (1.2); ¢ is its first eccentricity.

We will assume [ 4]

1 (13 + 313
u(l)E———3+ AT arcctgl

and we find
du 16 (3 4- 1) (1 — I?)

dl T (1 + 13 (3 1482 382

Hence it is seen that as [ increases from 0 to 1 the function u(l)
increases, reaching a maximum for ! = 1, and for further increases in !

constantly decreases; in addition, u(0) = - 7/2, ule) = 0. On this basis
we conclude that the equation
(13 | 312) — (3 1402 + 3y arcctgl =0 (2.8)

has only one positive finite root I, < 1, and that when I > [, the con-
dition (2.7) is satisfied.

Equation (2.8) is used, as is well-known [ 4]}, in determining the
Maclaurin ellipsoid with which the limiting Jacobi ellipsoid coincides
for 1/2(w?/n +p) = 0.187. The eccentricity of this ellipsoid is € =
0.8126..., and the root of equation (2.8) is l; = 0.717.

Thus, for Maclaurin ellipsoids with eccentricities € > ¢, the quadratic
form of the variables p, 7, @, , B, ¥, a, 3, 7, with which the

series expansion of the functlon i2 4) begins, 1s positive definite,

Among the terms of higher order in the expression of the function V
there are, however, terms which, in addition to the variables a, 3, 7,
depend on the variable ¢ as well.

Such terms are of the lowest order, as is easily seen in the following
2M
o —pe e — 208 22 F 2]

Adding and subtracting in the square brackets squared terms of a, f3,
7 we obtain
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2 oy [ — 20 2ER - 2 - B @2+ B )| — R (@ B )}

a

If the constant k is chosen so that k& > Za)z/ag + 1, then the quadratic
form of the variables &, n, a, f3, which are in the square brackets, will
be positive definite. And now it is obvious that the function (2.4) will
be a positive definite function with respect to the variables a’, (¥,
¥y, oa, B, 0, q, W, @y, 1 in a sufficiently small neighborhood of the
zero values of these variables, if the quadratic part of the function V
is positive definite.

Consequently, the stability in the sense of Liapunov with respect to
the variables a, b, ¢, b°, ¢’, p, 9, @, @,, w; of Maclaurin ellipsoids
with eccentricities ¢ < ¢, have been proved for the condition that the
initial disturbances satisfy the Dirichlet hypotheses.

From the stability with respect to the indicated variables, because
of the existence of first integrals of the equations of the disturbed
motion of the form Vﬁ = const, and also ¥, = const or V., = const, we can
draw conclusions about the stability of Maclaurin ellipsoids with
eccentricities ¢ < €, with respect to the variables ¢ and r as well,

We note that if an additional condition be imposed so that the form
of the fluid always remained an ellipsoid of revolution, then all Maclaurin
ellipsoids will be stable figures of the rotating fluid. Indeed, in this
case it is necessary to put a = f3 and in place of the quadratic form of
the variables a, f3,  entering into the expression for the function V
which was considered earlier we will have a quadratic form of the vari-
ables a and 9 of the form

2 -
2 (An + A+ 2 %2) a? -4 4 (p— Cy) ’%w’l Ap?

The conditions of positive definiteness of this quadratic expression
have the forms:

2 2 2
Ay + A + 2{’" ,%z >0, (All + Ap -+ 4620 agi) B 26202 %5 >0

and a choice of the positive constant p is always possible so that these

conditions will be satisfied if only the first of the inequalities (2.6)

is fulfilled., The latter, as was established earlier, always is satisfied
for Maclaurin ellipsoids, which also proves the stated assertion.

3. We will consider the particular solution of the equations of motion

a=a, b=b, c=c¢ @ =b=c=0 p=q=r=v
mlxwzzo, mng, G = Gy (3.1)
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which describe the motion of a fluid with velocities

2020 220

U = = ZA 1 b ¥ Uy = @02 + byt Z,

2, =0 (3.2)

moreover, the surface (1.2) remains stationary. Equations (1.15) in this
case take the forms

4ayb,? 4£a,2b2
(PG @)oot = (0 — gy )0 = Rt = 2

and transform into equations (2.2) if the notation

4ay?he?
<% — 0V 2
(ay® + bo?)? Q

is introduced.

Thus, we obtain [ 5] a series of Dedekind ellipsoids which are identical
in external form with the series of Jacobi ellipsoids.

Obviously, for

2002b0292

o aE T b 0.1871

the semi-axes of the ellipsoid (1.2) are equal, the fluid moves as a
single solid body rotating about the z-axis with angular velocity O, and
the Dedekind ellipsoid turns into the bifurcated ellipsoid £ which be-
longs simultaneously to the series of Maclaurin and Jacobi ellipsoids.

We will investigate the stability of the latter, supposing in the dis-
turbed motion

a=4a,+a, b=a0+387 c=c¢+ T, m3=g+73

The equations of the disturbed motion permit integrals of the form
(2.3), the first two of which after replacing y in the first by @ and
with the help of the integral ¥, = 0 can be written in the form

V' = A (P* 4 g% + Ago (0% - 09%) + Copn? + 205 Q1 -+ s ﬁ) +
Mo gy 40 B — @ o)+

eo? W 2 W e W ,

+ 2Ry ;5 (a*+ @2)} +(5 T Fﬁ ~27 zra—) (a? 4 8%) +
W . c*? oW . W

*’2(&; T o “wacea 5 a") o +...= const

Vo= A2 (P + ¢%) + 2454420 (poy + qug) 4 Age® (0% - + @g%) + Coo®™* +
+ %5% C2oQ? [2a¢ (o - B) 4 6aB] -+ 2C50 QO (Czo + 2Cy a:; B) -+ ... == const
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and the two others keep the same form with o replaced by Q.
We will construct a function of the form
VeV, — v, p S, (3.3)
-t Cyp 2 “4&22 3 )

which in terms of the smallest dimension differs from the function (2.4)
in the replacement of w by £ and of the coefficients (2.5) by the follow-
ing:

W c? W ¢ 0°W o ¢ MY M ..
_ e __9c AN Moo
A” (8a2 + a? 0Oc? 2 a dcda + 2R az 5 )0 5 Q
oW c2 W ¢ OW M c? 4M 9 .
Ap = (aa b T a2 8¢~ 4 dcda + 5 F)o"“ 5 Q (3.4)

The quadratic part of the function (3.3) will bLe positive definite
with respect to the variablesa f3, ¢, 3, ¥, P, 4, ©, @, 7 if the
conditions (2.6) are fulfilled. Comparing the coefficients %2.5) and
(3.4), we can convince ourselves that the latter are obtained from the
former upon replacing @ by Q and adding to the corresponding items
2/5 MQ2 and - 2/5M02, Therefore, the first of the equations (2.6) keeps
just the same form, which also is in n°2, and is satisfied, and the
second in the case under consideration reduces to the form

Q>0

and is also satisfied. In the same way the stability of the bifurcated
ellipsoid F under ellipsoidal disturbances with respect to the variables
P, 0, w, w,, @3, a, b, c, a’, b’, ¢” can be proved to a first approxima-
tion.
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